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DEVELOP A PERFORMANCE CODE
THAT DESCRIBES THE BEHAVIOR OF
THE ELECTROLYZER OPERATED
WITH PURE WATER OR MINIMAL
AMOUNT OF KOH.
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Non-noble metal catalyst Higher performance Non-noble metal catalyst
Well established technology Higher voltage efficiencies Non-corrosive electrolyte
Low performance High cost Low cost
High amount of KOH required Compact cell design Pure water operation possible
Long term stability Dynamic operation Higher operating Pressure
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GOAL

C N
To develop a code that
simulates the dynamic
operation of electrolyzer

o /

4 N

To understand the

degradation of the
electrolyzer

o /

" To optimise the AEMWE A

design to enable operation
using pure water or

9 minimal amount of KOH )
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MACROSCOPIC CODE

Li-ions Batteries

ab-initio Optimization
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= Stefan-Maxwell equation for gas diffusion

= Darcy equation for water

GDL+AL
(cATHODE]

= Enthalpy balance => calculation of T
< Mass balance => calculation of gty

1D+1D multiphysics fuel cell model based on lumped and bond graph
approaches.

A Implemented in MATLAB + SIMULINK.
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A The model is multiphase, allowing for transport of liquid water, electrolyte ions, and

= Water transport: L
electroosmotic drag & back diffusion

gaseous products through the porous layers.
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A Degradation mechanisms are to be added to calculate the electrolyser lifetime zt el
[R_GDE) z :’cr:::;:-;nlwm, N
under dynamic cycles. '

LY
i Ny Ha Ny e Ny i Ny
Jio | palance Transport Balance.
< | (c_cha) I‘_l | o [

A We create a model that allows us to optimize the design and performance of the

AEM Water electrolyzer.




MODELLING SCHEMATIC OF AEM

HED—"HE -+ %DE

Anode half-cell Cathode half-cell
o sk e - @ Water travels from the anode half-cell
(1.0} through the membrane
e H,O
OH @ Hydrogen is produced from water by HER
- C;\ = at the cathode and released via GDL
~ HER: 4H,O + 4e -> 40H + 2H;

OH from HER moves back to
the anode half-cell via the membrane

Bipoiar plate
Gas and Liquid Difusion Layer
Anote
Membrare
Cttetn
Gas Diffusion Layer
Bipokar plate

oM

® | Liquid Liquid Oxygen is produced from OH by OER
and Gas el at the anode and released via GDL
Transport Transport < . p
along with the electrolyte circulation

e = b1 ' OER: A0H = 2H,0 + O; + 4e
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lon exchange in electrolyte + Electrochemical Kinetics Component AEM Anode | Cathode | aGDL | cGDL

Anion Diffusion + Electroosmosis Thickness (8 n) 50 10 10 270 190




AEM Electrolyser

MEPHYSTO
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AEM ELECTROLYZER SCHEMATIC

In plane flow (Darcy) in an equivalent single mesh
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= Darcy equation for steam and hydrogen

Enthalpy balance == calculation of T
Mass balance == calculation of ngas, My
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Transport

Pai(Hz) ; Pa(H20);

= Water transport:

electroosmotic drag & back diffusion

Adsorbed water balance
Mebrane resistance
(semi-empirical laws)
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= \Water transport:

electroosmotic drag & back diffusion
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Through plane flow
(diffusion, electro-
0Smosis)

The model needs:

o To I Do

Mesh/flow distributor properties for Darcy.
Sinter properties for Darcy coefficient.
Membrane properties for ohmic loss and water flow.
Polarization curves for electrochemical law fitting.
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Through plane flow
(Darcy, Capillarity)
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Model

Electrochemistry

<
<

U Butler volmer kinetics
i Exchange current density

Fluid properties

A

U Partial pressure of gases
0 Liquid pressure inside
membrane

Overpotential

Ohmic losses
Activation overpotential
Gradient for pH.

lon exchange in  electrolyte
lonomer resistance

SRR\

under Implementation

Thermodynamics

»

U Equilibrium potential
U Activity of the species

2 phase flow

v

U Velocity of species
0 Multicomponent diffusion
i Capillary action

Membrane
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U lon conductivity
U Solve nernst planck equation
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ELECTRICAL RESPONSE

Interfacial

resistance
between

ionomer &
electrolyte

Activation lossesat the Ohmic losses in the

lonomer resistance Effects of lon exchange

on the electrolyte electrodes catalyst layer
ETHTT U T "Heh b b o 305 ¢ 0 8 777 0w i 0 TR T iHeHE HT THH
U 1y 1 iisghe ionomer and liquid electrolyte ohmic loss for each catalyst layer.
U Ny 7 dncludes the anode intrinsic kinetics losses, low pH and the role of bubble coverage of the
anode.
U Me777i-mwi o orefersito the ionic resistance of the membrane and ionomer.
U 0N 771 msrni wrefers to the overpotential due to the ion exchange between ionomer and liquid electrolyte.
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